Writing Absolute Value Functions (ALG.ABS.04)

Write an absolute value function for each graph.
1.

2.

3.

4.

5. | 5. |
| :--- |
6.

9.

10.

11. $V(0,3) \quad P(4,-1)$
12. $V(-2,0) \quad P(-6,4)$
13. $V(1,4) \quad P(-1,-2)$
14. $V(6,-2) \quad P(-3,4)$
15. $V(3,1) \quad P(2,6)$
16. $V(-2,-5) \quad P(4,3)$
17. $V(-4,0) \quad P(0,-2)$
18. $V(0,7) \quad P(-2,0)$

Plot each set of ordered pairs on a coordinate plane and then write an absolute value function that passes through the three points.
19. $(-5,0),(-3,0)$, and $(0,3)$
20. $(-5,0),(-1,0)$, and $(0,-2)$
21. $(-4,-1),(11,1)$, and $(-19,5)$
22. $(-2,4),(-8,-5)$, and $(4,1)$

Write a function from each description.

23. an absolute value function whose parent graph has been translated 3 units right and 2 units up
24. an absolute value function whose parent graph has been reflected over the x-axis and translated 4 units up
25. an absolute value function whose parent graph has been compressed horizontally by a factor of 2 and translated 6 units left and 1 unit down
26. an absolute value function whose parent graph has been stretched horizontally by a factor of 2.5 , translated 3 units up, and reflected over the x-axis
27. an absolute value function whose parent graph has been compressed horizontally by a factor of $\frac{3}{2}$, translated five units right, and translated two units down
28. an absolute value function whose parent graph has been stretched horizontally by a factor of 4, reflected over the x-axis, and translated 2 units to the left
