Writing Absolute Value Functions (ALG.ABS.04)

Write an absolute value function for each graph.

$$
f(x)=|x-2|-3
$$

3.

2.

$f(x)=-|x+1|+5$
4.

5.

$$
f(x)=-\frac{|x+5|}{2}-1
$$

7.

9.

6.

8.

10.

$$
f(x)=5|x+1|-6
$$

11. $V(0,3) \quad P(4,-1) \quad f(x)=-|x|+3$
12. $V(-2,0) \quad P(-6,4) \quad f(x)=|x+2|$
13. $V(1,4) \quad P(-1,-2) \quad f(x)=-3|x-1|+4$
14. $V(6,-2) \quad P(-3,4) \quad f(x)=\frac{2}{3}|x-6|-2$
15. $V(3,1) \quad P(2,6) \quad \boldsymbol{f}(\boldsymbol{x})=5|x-3|+1$
16. $V(-2,-5) \quad P(4,3) \quad f(x)=\frac{4}{3}|x+2|-5$
17. $V(-4,0) \quad P(0,-2) \quad f(x)=-\frac{1}{2}|x+4|$
18. $V(0,7) \quad P(-2,0) \quad f(x)=-\frac{7}{2}|x|+7$

Plot each set of ordered pairs on a coordinate plane and then write an absolute value function that passes through the three points.
19. $(-5,0),(-3,0)$, and $(0,3) \quad f(x)=|x+4|-1$
20. $(-5,0),(-1,0)$, and $(0,-2) \quad f(x)=-2|x+3|+4$
21. $(-4,-1),(11,1)$, and $(-19,5)$
$f(x)=\frac{2}{5}|x-1|-3$
22. $(-2,4),(-8,-5)$, and $(4,1)$ $f(x)=-\frac{3}{2}|x|+7$

Write a function from each description.

23. an absolute value function whose parent graph has been translated 3 units right and 2 units up

$$
f(x)=|x-3|+2
$$

24. an absolute value function whose parent graph has been reflected over the x-axis and translated 4 units up

$$
f(x)=-|x|+4
$$

25. an absolute value function whose parent graph has been compressed horizontally by a factor of 2 and translated 6 units left and 1 unit down

$$
f(x)=2|x+6|-1
$$

26. an absolute value function whose parent graph has been stretched horizontally by a factor of 2.5 , translated 3 units up, and reflected over the x-axis

$$
f(x)=-\frac{2}{5}|x|+3
$$

27. an absolute value function whose parent graph has been compressed horizontally by a factor of $\frac{3}{2}$, translated five units right, and translated two units down

$$
f(x)=\frac{3}{2}|x-5|-2
$$

28. an absolute value function whose parent graph has been stretched horizontally by a factor of 4 , reflected over the x-axis, and translated 2 units to the left

$$
f(x)=-\frac{1}{4}|x+2|
$$

