Writing Complex Conjugates (ALG.CN.06)

Write the complex conjugate of each complex number. Then multiply the number by its complex conjugate.

 1 - 6i 1 + 6i; 37 	2. $-4 + 3i$ -4 - 3i; 25	3. –7 <i>i</i> 7 <i>i</i> ; 49
4. $\sqrt{10}i$ $-\sqrt{10}i$; 10	5. –2.5 <i>i</i> 2.5<i>i</i>; 6.25	6. $\frac{8}{3}i$ $-\frac{8}{3}i; \frac{64}{9}$
7. $-3 - \sqrt{2}i$ $-3 + \sqrt{2}i$; 11	8. $1 + \sqrt{5}i$ $1 - \sqrt{5}i; 6$	9. $\sqrt{-40}$ $-2\sqrt{10}i; 40$
10. $3\sqrt{-6}$ -3 $\sqrt{6}i$; 54	11. $\sqrt{3} - 2i\sqrt{6}$ $\sqrt{3} + 2i\sqrt{6}$; 27	12. $-7\sqrt{2} + \frac{3}{2}i$ $-7\sqrt{2} - \frac{3}{2}i; \frac{401}{4}$

13. What is the complex conjugate of a real number?

Since any real number can be written as a + 0i, its complex conjugate is a - 0i. The complex conjugate of a real number is the number itself.

14. Show that the complex conjugate of the sum of two complex numbers a + bi and c + di is the sum of their complex conjugates.

(a+bi)+(c+di)	(a-bi)+(c-di)
$(\boldsymbol{a}+\boldsymbol{c})+(\boldsymbol{b}+\boldsymbol{d})\boldsymbol{i}$	(a+c)+(-b-d)i
$(\boldsymbol{a}+\boldsymbol{c})-(\boldsymbol{b}+\boldsymbol{d})\boldsymbol{i}$	(a+c)-(b+d)i

15. Show that the complex conjugate of the product of two complex numbers *a* + *bi* and *c* + *di* is the product of their complex conjugates.

(a+bi)(c+di)	(a+bi)(c+di)
$ac + (ad)i + (bc)i + dbi^2$	(a-bi)(c-di)
(ac-db)+(ad+bc)i	$ac - (ad)i - (bc)i + dbi^2$
(ac-db)-(ad+bc)i	(ac-db)-(ad+bc)i