Writing Complex Conjugates (ALG.CN.06)

Write the complex conjugate of each complex number. Then multiply the number by its complex conjugate.

1. $1-6 i$
$1+6 i ; 37$
2. $-4+3 i$
3. $-7 i$
$-4-3 i ; 25$
7i; 49
4. $\sqrt{10} i$

$$
-\sqrt{10} i ; 10
$$

5. $-2.5 i$
2.5i; 6.25
6. $\frac{8}{3} i$

$$
-\frac{8}{3} i ; \frac{64}{9}
$$

7. $\begin{aligned} &-3-\sqrt{2} i \\ &-3+\sqrt{2} i ; 11\end{aligned}$
8. $3 \sqrt{-6}$
$-3 \sqrt{6} i ; 54$
9. $1+\sqrt{5} i$
$1-\sqrt{5} i ; 6$
10. $\sqrt{3}-2 i \sqrt{6}$
$\sqrt{3}+2 i \sqrt{6} ; 27$
11. $\sqrt{-40}$
$-2 \sqrt{10} i ; 40$
12. $-7 \sqrt{2}+\frac{3}{2} i$
$-7 \sqrt{2}-\frac{3}{2} i ; \frac{401}{4}$
13. What is the complex conjugate of a real number?

Since any real number can be written as $a+0 i$, its complex conjugate is $a-0 i$. The complex conjugate of a real number is the number itself.
14. Show that the complex conjugate of the sum of two complex numbers $\boldsymbol{a}+\boldsymbol{b i}$ and $\boldsymbol{c}+\boldsymbol{d} \boldsymbol{i}$ is the sum of their complex conjugates.

$$
\begin{array}{ll}
(a+b i)+(c+d i) & (a-b i)+(c-d i) \\
(a+c)+(b+d) i & (a+c)+(-b-d) i \\
(a+c)-(b+d) i & (a+c)-(b+d) i
\end{array}
$$

15. Show that the complex conjugate of the product of two complex numbers $\boldsymbol{a}+\boldsymbol{b i}$ and $\boldsymbol{c}+\boldsymbol{d i}$ is the product of their complex conjugates.

$$
\begin{gathered}
(a+b i)(c+d i) \\
a c+(a d) i+(b c) i+d b i^{2} \\
(a c-d b)+(a d+b c) i \\
(a c-d b)-(a d+b c) i
\end{gathered}
$$

$$
\begin{gathered}
(a+b i)(c+d i) \\
(a-b i)(c-d i) \\
a c-(a d) i-(b c) i+d b i^{2} \\
(a c-d b)-(a d+b c) i
\end{gathered}
$$

