Tangent Line Equations (CALC.DIF.05)

1. Write an equation of the tangent line to the graph of $f(x)$ at the given value of x.

$$
f(x)=\frac{1}{2} x^{4}-3 x+6 \quad x=1 \quad y-\frac{7}{2}=-(x-1)
$$

2. Write an equation of the tangent line to the graph of $g(x)$ at the given value of x.

$$
g(x)=\frac{1}{x}-\frac{1}{x^{2}} \quad x=-2 \quad y+\frac{3}{4}=-1 / 2(x+2)
$$

3. Write an equation of the tangent line to the graph of $f(x)$ at the given value of x.

$$
f(x)=x^{2} \cdot \sin x \quad x=\frac{\pi}{2} \quad y-\frac{\pi^{2}}{4}=\pi\left(x-\frac{\pi}{2}\right)
$$

4. Write an equation of the tangent line to the graph of $g(x)$ at the given value of x.

$$
g(x)=\frac{1}{x}-\sqrt{\cos x} \quad x=\frac{\pi}{3} \quad y-\left(\frac{3}{\pi}-\frac{\sqrt{2}}{2}\right)=\left(\frac{\sqrt{6}}{4}-\frac{9}{\pi^{2}}\right)\left(x-\frac{\pi}{3}\right)
$$

5. Write an equation of the tangent line to the graph of $f(x)$ at the given value of x.

$$
f(x)=\sqrt{x^{2}+x} \quad x=1 \quad y-\sqrt{2}=\frac{3 \sqrt{2}}{4}(x-1)
$$

6. Write an equation of the tangent line to the graph of $g(x)$ at the given value of x.

$$
g(x)=x \cdot \ln x^{2} \quad x=1 \quad y=2 x-2
$$

7. Write an equation of the tangent line to the graph of $g(x)$ at the given value of x.

$$
g(x)=\sqrt{x}-\frac{1}{4} e^{x} \quad x=\ln 16 \quad y-2 \sqrt{\ln 2}+4=\left(\frac{1}{4 \sqrt{\ln 2}}-4\right)(x-\ln 16)
$$

8. Write an equation of the tangent line to the graph of $h(x)$ at the given value of x.

$$
h(x)=(\ln x)^{3} \quad x=e^{3} \quad y-27=\frac{27}{e^{3}}\left(x-e^{3}\right)
$$

9. Write an equation of the tangent line to the graph of $f(x)$ at the given value of x.

$$
f(x)=2 x+e^{2 x} \quad x=0 \quad y=4 x+1
$$

10. Write an equation of the tangent line to the graph of $g(x)$ at the given value of x.

$$
g(x)=x\left(e^{2 x}-e^{x}\right) \quad x=-1 \quad y-\frac{1}{e}+\frac{1}{e^{2}}=-\frac{1}{e^{2}}(x+1)
$$

11. Write an equation of the tangent line to the graph of $f(x)$ at the given value of x.

$$
f(x)=x^{4}-4 x^{3}+5 x+3 \quad x=1 \quad y=-3 x+8
$$

12. Write an equation of the tangent line to the graph of $g(x)$ at the given value of x.

$$
g(x)=\frac{1+\sec x}{1-\sec x} \quad x=\frac{3 \pi}{4} \quad y-(2 \sqrt{2}-3)=\frac{2 \sqrt{2}}{(1+\sqrt{2})^{2}}\left(x-\frac{3 \pi}{4}\right)
$$

13. Determine the point of tangency where the function has a horizontal tangent line.

$$
f(x)=\ln \sqrt{\frac{e^{x-1}}{x+1}} \quad\left(0,-\frac{1}{2}\right)
$$

14. Find k such that the line is tangent to the graph of the function.

$$
f(x)=k x^{2} \quad y=-4 x+5 \quad k=-\frac{4}{5}
$$

15. Find k such that the line is tangent to the graph of the function.

$$
f(x)=k x^{2 / 3} \quad y=-2 x-8 \quad k=-6
$$

16. Find equations of the tangent lines to the graph of $p(x)$ that are parallel to the given line.

$$
p(x)=2 x^{3}-5 x^{2}+3 x-9 \quad 21 x-3 y=-25 \quad y+7=7(x-2) ; y+\frac{287}{27}=7\left(x+\frac{1}{3}\right)
$$

17. Find equations of the tangent lines to the graph of $f(x)$ that are parallel to the given line.

$$
f(x)=\frac{x-2}{x+2} \quad 8 x-2 y=-13 \quad y=4 x+1 ; y=4 x+17
$$

18. The given curve is called a Witch of Agnesi. Find an equation of the tangent line to this curve at the given point.

$$
y=\frac{1}{1+x^{2}} \quad P\left(-2, \frac{1}{5}\right) \quad y=\frac{4}{25} x+\frac{13}{25}
$$

19. Graph $f(x)$ and $g(x)$ in the same coordinate plane. Find equations of the two lines that are simultaneously tangent to both parabolas.

$$
f(x)=-x^{2} \quad g(x)=x^{2}-2 x+5 \quad y=2 x+1 ; y=-4 x+4
$$

20. Show that the graph of the function does not have a horizontal tangent line.

$$
f(x)=5 x+\cos x-4 \quad f^{\prime}(x)=5-\sin x ; f^{\prime}(x)=0 \text { has no solutions }
$$

