Separable Differential Equations (CALC.DEQ.04)

Find the general solution for each separable differential equation.

2.
$$y' = \frac{1}{12}x^2y$$
 $y = Ce^{x^3/36}$

3.
$$\frac{dy}{dx} = 3x\sqrt{y}$$
 $y = \frac{1}{16}(3x^2 + 2C)^2$

4.
$$(e^y + 1)y' = 2 - \sec^2 x$$
 $e^y + y = 2x - \tan x + C$

5.
$$y' = xe^y$$
 $y = -\ln\left(C - \frac{x^2}{2}\right)$

6.
$$x + 2y\sqrt{x^2 - 4} \cdot y' = 0$$
 $y = C - \sqrt{x^2 - 4}$

7.
$$xy' = 3(y-2)$$
 $y = Cx^3 + 2$

8.
$$\frac{dy}{dx} = xe^{x^2 - \ln y^2}$$
 $y^3 = \frac{3}{2}e^{x^2} + 3C$

9.
$$\frac{dy}{dx} = e^{x-2y}$$
 $y = \frac{1}{2} \ln(2e^x + 2C)$

10.
$$\frac{2 \ln x}{x} = y \cdot y' \sqrt{y^2 + 9}$$
 $\frac{1}{3} (y^2 + 9)^{3/2} = (\ln x)^2 + C$

Find the particular solution that satisfies the initial condition.

11.
$$y \cdot y' - 5e^x = 10$$
 $y(0) = 2$ $y^2 = 10e^x + 20x - 6$

12.
$$2y \cdot y' = 4 \sin x$$
 $y\left(\frac{\pi}{4}\right) = \sqrt{2}$ $y^2 = -4\cos x + 2 + 2\sqrt{2}$

13.
$$\frac{dy}{dx} = ye^{-x}$$
 $y(0) = e$ $y = e^{2 - e^{-x}}$

14.
$$\sqrt{x} - \sqrt{y} \cdot y' = 0$$
 $y(9) = 1$ $y^{3/2} = x^{3/2} - 26$

15.
$$y(2x-1) + y' = 0$$
 $y(-3) = e$ $y = e^{x-x^2+13}$

16.
$$y' = -2 \tan y$$
 $y(\ln 2) = \frac{\pi}{2}$ $y = \sin^{-1}(4e^{-2x})$

17.
$$y \cdot \ln x - xy' = 0$$
 $y(e^2) = 1$ $y = e^{(\ln x)^2/2 - 2}$

18.
$$y\sqrt{4-x^2} \cdot y' = x\sqrt{4-y^2}$$
 $y(0) = 1$ $y^2 = 4 - (\sqrt{4-x^2} + \sqrt{3} - 2)^2$

19.
$$y' = xy \sin x^2$$
 $y(0) = \sqrt{e}$ $y = e^{-\cos(x^2)/2 + 1}$

20.
$$y' = e^{y-x}(x-1)$$
 $y(0) = 1$ $y = -\ln\left(x \cdot e^{-x} + \frac{1}{e}\right)$