Separable Differential Equations (CALC.DEQ.04)

Find the general solution for each separable differential equation.

1. $\frac{d y}{d x}=\frac{12 x^{3}}{4 y-\sin y} \quad 2 y^{2}+\cos y=3 x^{4}+C$
2. $y^{\prime}=\frac{1}{12} x^{2} y \quad y=C e^{x^{3} / 36}$
3. $\frac{d y}{d x}=3 x \sqrt{y} \quad y=\frac{1}{16}\left(3 x^{2}+2 C\right)^{2}$
4. $\left(e^{y}+1\right) y^{\prime}=2-\sec ^{2} x \quad e^{y}+y=2 x-\tan x+C$
5. $y^{\prime}=x e^{y} \quad y=-\ln \left(C-\frac{x^{2}}{2}\right)$
6. $x+2 y \sqrt{x^{2}-4} \cdot y^{\prime}=0 \quad y=C-\sqrt{x^{2}-4}$
7. $x y^{\prime}=3(y-2) \quad y=C x^{3}+2$
8. $\frac{d y}{d x}=x e^{x^{2}-\ln y^{2}} \quad y^{3}=\frac{3}{2} e^{x^{2}}+3 C$
9. $\frac{d y}{d x}=e^{x-2 y} \quad y=\frac{1}{2} \ln \left(2 e^{x}+2 C\right)$
10. $\frac{2 \ln x}{x}=y \cdot y^{\prime} \sqrt{y^{2}+9} \quad \frac{1}{3}\left(y^{2}+9\right)^{3 / 2}=(\ln x)^{2}+C$

Find the particular solution that satisfies the initial condition.
11. $y \cdot y^{\prime}-5 e^{x}=10 \quad y(0)=2 \quad y^{2}=10 e^{x}+20 x-6$
12. $2 y \cdot y^{\prime}=4 \sin x \quad y\left(\frac{\pi}{4}\right)=\sqrt{2} \quad y^{2}=-4 \cos x+2+2 \sqrt{2}$
13. $\frac{d y}{d x}=y e^{-x} \quad y(0)=e \quad y=e^{2-e^{-x}}$
14. $\sqrt{x}-\sqrt{y} \cdot y^{\prime}=0 \quad y(9)=1 \quad y^{3 / 2}=x^{3 / 2}-26$
15. $y(2 x-1)+y^{\prime}=0 \quad y(-3)=e \quad y=e^{x-x^{2}+13}$
16. $y^{\prime}=-2 \tan y \quad y(\ln 2)=\frac{\pi}{2} \quad y=\sin ^{-1}\left(4 e^{-2 x}\right)$
17. $y \cdot \ln x-x y^{\prime}=0 \quad y\left(e^{2}\right)=1 \quad y=e^{(\ln x)^{2} / 2-2}$
18. $y \sqrt{4-x^{2}} \cdot y^{\prime}=x \sqrt{4-y^{2}} \quad y(0)=1 \quad y^{2}=4-\left(\sqrt{4-x^{2}}+\sqrt{3}-2\right)^{2}$
19. $y^{\prime}=x y \sin x^{2} \quad y(0)=\sqrt{e} \quad y=e^{-\cos \left(x^{2}\right) / 2+1}$
20. $y^{\prime}=e^{y-x}(x-1) \quad y(0)=1 \quad y=-\ln \left(x \cdot e^{-x}+\frac{1}{e}\right)$

