Monomials (ALG.POL.01)

Determine the degree of each monomial.

1. $5 x^{8}$
2. $-16 m^{3} n$
3. $\sqrt{3} m^{7} n^{2}$
4. $-y^{3} z$
5. $\frac{2}{5} a^{2} b c^{5}$
6. $2 x y^{0} z^{2}$

Explain why each algebraic expression is not a monomial.

7. $\frac{5}{n^{3}}$
$9 p^{3}-5 p^{2}$
$\frac{7}{3} u^{5} y^{-3}$
8. $-3 \sqrt{t^{3}}$
$\frac{3 x}{2 y} \quad 15 x^{4} y^{2 / 3}$

Write a monomial for each description.

9. degree 8 monomial with 2 variables
10. degree 5 monomial with 1 variable
11. degree 12 monomial
12. degree 0 monomial

Multiply. Determine the degree of each product.
15. $6 x^{4} \cdot 3 x^{7}$
17. $-\frac{3}{10} a^{2} b \cdot 25 a b^{4}$
19. $30 x^{3} y \cdot \frac{6^{2} x}{5^{3}} \cdot \frac{200 x y^{4}}{9}$
21. $\sqrt{3} y^{3} \cdot 2 \sqrt{6} \cdot 3 \sqrt{2} y^{3}$
23. $\left(-6 x^{4} y z^{2}\right)^{3}$
16. $5 n \cdot n^{3} \cdot-2$
18. $14 x y^{2} z \cdot-7 x^{0} z^{2} \cdot 2 x^{2} y$
20. $\frac{2}{7} m^{5} n^{3} \cdot \frac{14}{5} n^{2}$
22. $\frac{\sqrt{10}}{3} m^{3} n^{0} \cdot \frac{6 \sqrt{2}}{5} m n \cdot n^{2}$
24. $\left(\sqrt{2} a^{8} b^{0} c\right)^{4}$

Divide. Determine if the quotient is a monomial. If it is, determine its degree; if it is not, indicate why not.
25. $\frac{15 x^{5}}{-3 x^{3}}$
26. $\frac{21 k^{7}}{14 k^{6}}$
27. $\frac{18 m^{4} n^{10}}{30 m^{6} n^{8}}$
28. $\frac{6^{2} x^{3} y^{3}}{2^{3} x \cdot 3 y^{5}}$
29. $\frac{\sqrt{10} m^{3} n^{2}}{\sqrt{2} m n^{2}}$
30. $\frac{30 \sqrt{30} a^{2} b c^{6}}{12 \sqrt{6} a b^{2} c^{3}}$

Given the length and width of each rectangle, calculate its area, including units.
31. Length: ($7 x$) inches Width: $\left(4 x^{2}\right)$ inches
32. Length: ($3 a^{2}$) centimeters Width: (9ab) centimeters
33. Length: $\left(\sqrt{3} m^{2} n\right)$ meters Width: $\left(2 \sqrt{3} m n^{4}\right)$ meters
34. Length: $\left(\frac{11}{6} x^{5}\right)$ feet Width: $\left(\frac{5}{2} x y^{2}\right)$ feet

