Solving Quadratic Equations (ALG.QUAD.03)

Solve each equation by taking the square root.

1. $x^{2}=64$
2. $x^{2}=50$
3. $x^{2}=-121$
4. $x^{2}=-240$
5. $x^{2}-25=0$
6. $x^{2}-75=0$
7. $x^{2}+81=0$
8. $x^{2}+27=0$
9. $49 x^{2}-16=0$
10. $25 x^{2}-18=0$
11. $36 x^{2}+169=0$
12. $75 x^{2}+144=0$
13. $0.05 x^{2}-5=0$
14. $\frac{5}{6} x^{2}-30=0$
15. $4.75 x^{2}+684=0$
16. $\frac{7}{4} x^{2}+343=0$

Solve each equation by factoring.
17. $x^{2}+9 x+20=0$
18. $x^{2}-13 x+40=0$
19. $x^{2}+8 x+16=0$
20. $x^{2}-10 x+25=0$
21. $x^{2}-2 x-15=0$
22. $x^{2}+4 x-21=0$
23. $-4 x^{2}+4 x+8=0$
24. $10 x^{2}+19 x+6=0$
25. $14 x^{2}=35+39 x$
26. $6 x^{3}+5 x^{2}=6 x$
27. $9 x^{2}+16=24 x$
28. $3 x^{2}=x+14$
29. $100 x-4 x^{3}=0$
30. $-5 x^{2}+45=0$
31. $10 x^{3}+48 x^{2}=10 x$
32. $4 x(x+3)+2(x-2)+x=0$
33. $5 x(5 x-4)=4(1-5 x)$
34. $(x+1)(x-1)=5(x+1)$
35. $(x-2)^{2}(x+1)=x(x+3)^{2}$
36. $-x^{2}\left(x^{2}-2\right)=2 x^{4}+5 x^{2}(x-2)$
37. $3 x(3 x+5)-7=-x(x+6)+3$
38. $(5 x+2)(2 x-3)=2(2 x-1)(x-2)+5$
39. $4 x\left(x^{2}+4\right)+5=5\left(4 x^{2}+1\right)+4 x+x^{3}$
40. $(x+3)^{2}-(2 x-1)^{2}=0$
41. $4 x(4 x+1)=15(1-2 x)$
42. $6(x+1)^{2}+7 x=-9$
43. $-x(x-6)^{2}+3 x(x+4)(x-3)-5 x^{2}=0$
44. $(x-2)^{3}+(x-2)[(5 x-1)+(x-3)]=0$
45. $\frac{x+4}{3}=\frac{-3}{x-2}$
46. $\frac{2 x^{2}}{3}=\frac{3}{2}$
47. $x=\frac{9}{6-x}$
48. $x=\frac{6}{x-5}$
49. $\frac{x+3}{-3 x}=\frac{4}{x+7}$
50. $\frac{4 x}{x+7}=\frac{10}{x-2}$

Write a quadratic function from the given set of roots.

51. $x=2,4$
52. $x=-3,6$
53. $x=5,-3$
54. $x=-5,-8$
55. $x=0,9$
56. $x=0,-2$
57. $x= \pm 4$
58. $x=-\frac{1}{3}, \frac{1}{3}$
59. $x=4,-\frac{1}{6}$
60. $x=\frac{1}{2}, \frac{5}{3}$
61. $x=-\frac{8}{3}, \frac{3}{5}$
62. $x=-\frac{5}{3},-\frac{3}{5}$
63. For the equation, $x^{2}+k x+24=0$, what value(s) of k will result in integer solutions? Justify your answer.
64. For the equation, $x^{2}+k x-12=0$, what value(s) of k will result in integer solutions? Justify your answer.
65. For the equation, $x^{2}+k x+30=0$, what value(s) of k will result in whole number solutions? Justify your answer.
66. For the equation, $x^{2}-k x+16=0$, what value(s) of k will result in whole number solutions?
67. For the equation, $x^{2}-8 x+k=0$, what value of k will result in a single solution? What is the solution?
68. For the equation, $x^{2}+10 x+k=0$, what value of k will result in a single solution? What is the solution?
69. Describe and correct the error.

$$
\begin{gathered}
3(x+2)^{2}+5=53 \\
3(x+2)^{2}=48 \\
(x+2)^{2}=16 \\
x+2=4 \\
x=2
\end{gathered}
$$

71. A rectangle has a width of x units and a length $(x+4)$ units. If the area is 32 square units, then determine the value of x and the perimeter of the rectangle.
72. The area of a circle is 81π square inches and the diameter is $(4 x+10)$ inches. Determine the value of x and the circumference of the circle.
73. The height of a triangle is $(x+5)$ centimeters and its base length is $(3 x+8)$ centimeters. If the area of the triangle is 90 square centimeters, then determine the value of x and the dimensions of the triangle.
74. The difference of two integers is 25 and their product is -126 . Write and solve an equation to determine the two pairs of integers.
75. Describe and correct the error.

$$
\begin{gathered}
-7 x^{2}-63=0 \\
-7 x^{2}=63 \\
x^{2}=-9 \\
x= \pm 3
\end{gathered}
$$

72. A rectangle has a perimeter of $(6 x+14)$ meters. If the width of the rectangle is $(2 x+1)$ meters and the area of the rectangle is 195 square meters, then determine the value of x and the dimensions of the rectangle.
73. The circumference of a circle is $(8 x+6) \pi$ yards. The area of the circle is 225π square yards. Determine the value of x and the radius of the circle.
74. The area of a trapezoid is $275 \mathrm{~mm}^{2}$. The lengths of the parallel sides are $(3 x+2)$ mm and $(2 x+3) \mathrm{mm}$. The height of the trapezoid is $(x+2) \mathrm{mm}$. Determine the value of x and the dimensions of the trapezoid.
75. The sum of two integers is 42 and their product is 416 . Write and solve an equation to determine the two integers.

Solve each equation by factoring. Use a \boldsymbol{u}-substitution where $\boldsymbol{u}=\boldsymbol{x}^{\mathbf{2}}$.

79. $x^{4}-13 x^{2}+36=0$
80. $x^{4}-9 x^{2}+20=0$
81. $36 x^{4}-97 x^{2}+36=0$
82. $9 x^{4}-5 x^{2}-4=0$
83. $x^{4}-2 x^{2}+1=0$
84. $x^{4}-13 x^{2}+30=0$
85. $2 x^{4}-5 x^{2}+2=0$
86. $x^{4}+13 x^{2}+40=0$
