Solving Quadratic Equations (ALG.QUAD.03)

Solve each equation by taking the square root.

1. $x^2 = 64$ $x = \pm 8$ 2. $x^2 = 50$ $x = \pm 5\sqrt{2}$ 3. $x^2 = -121$ $x = \pm 11i$ 4. $x^2 = -240$ $x = +4i\sqrt{5}$ 5. $x^2 - 25 = 0$ x = +56. $x^2 - 75 = 0$ $x = +5\sqrt{3}$ 7. $x^2 + 81 = 0$ x = +9i8. $x^2 + 27 = 0$ $x = +3i\sqrt{3}$ 9. $49x^2 - 16 = 0$ $x = \pm \frac{4}{7}$ **10.** $25x^2 - 18 = 0$ $x = \pm \frac{3\sqrt{2}}{5}$ 11. $36x^2 + 169 = 0$ $x = \pm \frac{13}{6}i$ 12. $75x^2 + 144 = 0$ $x = \pm \frac{4\sqrt{3}}{5}i$ 13. $0.05x^2 - 5 = 0$ $x = \pm 10$ 14. $\frac{5}{6}x^2 - 30 = 0$ $x = \pm 6$ **15.** $4.75x^2 + 684 = 0$ x = +12i16. $\frac{7}{4}x^2 + 343 = 0$ $x = \pm 14i$ Solve each equation by factoring. 17. $x^2 + 9x + 20 = 0$ x = -4, -5**18.** $x^2 - 13x + 40 = 0$ **x** = **5.8** 19. $x^2 + 8x + 16 = 0$ x = -4**20.** $x^2 - 10x + 25 = 0$ **x** = **5** 22. $x^2 + 4x - 21 = 0$ x = -7, 321. $x^2 - 2x - 15 = 0$ x = -3.523. $-4x^2 + 4x + 8 = 0$ x = -1, 224. $10x^2 + 19x + 6 = 0$ $x = -\frac{3}{2}, -\frac{2}{5}$ **26.** $6x^3 + 5x^2 = 6x$ $x = -\frac{3}{2}$, $0, \frac{2}{3}$ **25.** $14x^2 = 35 + 39x$ $x = -\frac{5}{7}, \frac{7}{2}$ **28.** $3x^2 = x + 14$ $x = -2, \frac{7}{2}$ 27. $9x^2 + 16 = 24x$ $x = \frac{4}{3}$

algquad03_sol.pdf

29.
$$100x - 4x^3 = 0$$
 x = **0**, ±**5**

31.
$$10x^3 + 48x^2 = 10x$$
 $x = -5, 0, \frac{1}{5}$

33.
$$5x(5x-4) = 4(1-5x)$$
 $x = \pm \frac{2}{5}$

35.
$$(x-2)^2(x+1) = x(x+3)^2$$

 $x = -\frac{4}{3}, \frac{1}{3}$

37.
$$3x(3x + 5) - 7 = -x(x + 6) + 3$$

 $x = -\frac{5}{2}, \frac{2}{5}$

39.
$$4x(x^2 + 4) + 5 = 5(4x^2 + 1) + 4x + x^3$$

 $x = 0, \frac{2}{3}, 6$

43. $-x(x-6)^2 + 3x(x+4)(x-3) - 5x^2 = 0$ x = -9, 0, 4

41.
$$4x(4x + 1) = 15(1 - 2x)$$

 $x = -\frac{5}{2}, \frac{3}{8}$

30.
$$-5x^2 + 45 = 0$$
 x = **±3**

32.
$$4x(x+3) + 2(x-2) + x = 0$$
 $x = -4, \frac{1}{4}$

34.
$$(x + 1)(x - 1) = 5(x + 1)$$
 $x = -1, 6$

36.
$$-x^{2}(x^{2}-2) = 2x^{4} + 5x^{2}(x-2)$$

 $x = -3, 0, \frac{4}{3}$

38.
$$(5x+2)(2x-3) = 2(2x-1)(x-2) + 5$$

 $x = -\frac{3}{2}, \frac{5}{3}$

40.
$$(x + 3)^2 - (2x - 1)^2 = 0$$

 $x = -\frac{2}{3}, 4$

42.
$$6(x + 1)^2 + 7x = -9$$

 $x = -\frac{5}{3}, -\frac{3}{2}$

44.
$$(x-2)^3 + (x-2)[(5x-1) + (x-3)] = 0$$

 $x = 0, \pm 2$

45.
$$\frac{x+4}{3} = \frac{-3}{x-2}$$
 $x = -1$ 46. $\frac{2x^2}{3} = \frac{3}{2}$ $x = \pm \frac{3}{2}$

47.
$$x = \frac{9}{6-x}$$
 $x = 3$ 48. $x = \frac{6}{x-5}$ $x = -1, 6$

$$49. \frac{x+3}{-3x} = \frac{4}{x+7} \quad x = -21, -1 \qquad 50. \frac{4x}{x+7} = \frac{10}{x-2} \quad x = -\frac{5}{2}, 7$$

Write a quadratic function from the given set of roots.

51. x = 2, 4 $f(x) = x^2 - 6x + 8$ 52. x = -3, 6 $f(x) = x^2 - 3x - 18$

53.
$$x = 5, -3$$
 $f(x) = x^2 - 2x - 15$

- 55. x = 0,9 $f(x) = x^2 9x$
- 57. $x = \pm 4$ $f(x) = x^2 16$

59.
$$x = 4, -\frac{1}{6}$$
 $f(x) = 6x^2 - 23x - 4$

- 61. $x = -\frac{8}{3}, \frac{3}{5}$ $f(x) = 15x^2 + 31x 24$
- 63. For the equation, $x^2 + kx + 24 = 0$, what value(s) of k will result in <u>integer</u> solutions? Justify your answer. $k = \pm 10, \pm 11, \pm 14, \pm 25$
- 65. For the equation, $x^2 + kx + 30 = 0$, what value(s) of k will result in <u>whole number</u> solutions? Justify your answer. k = -11, -13, -17, -31
- 67. For the equation, $x^2 8x + k = 0$, what value of k will result in a single solution? What is the solution? k = 16
- 69. Describe and correct the error.

$$3(x + 2)^{2} + 5 = 53$$

$$3(x + 2)^{2} = 48$$

$$(x + 2)^{2} = 16$$

$$x + 2 = 4$$

$$x = 2$$

The second to last step should be: $x + 2 = \pm 4$.

54. x = -5, -8 $f(x) = x^2 + 13x + 40$

56.
$$x = 0, -2$$
 $f(x) = x^2 + 2x$

58.
$$x = -\frac{1}{3}, \frac{1}{3}$$
 $f(x) = 9x^2 - 1$

60.
$$x = \frac{1}{2}, \frac{5}{3}$$
 $f(x) = 6x^2 - 13x + 5$

- 62. $x = -\frac{5}{3}, -\frac{3}{5}$ $f(x) = 15x^2 + 34x + 15$
- 64. For the equation, $x^2 + kx 12 = 0$, what value(s) of k will result in <u>integer</u> solutions? Justify your answer. $k = \pm 1, \pm 4, \pm 11$
- **66.** For the equation, $x^2 kx + 16 = 0$, what value(s) of *k* will result in <u>whole number</u> solutions?

k = 8, 10, 17

- **68**. For the equation, $x^2 + 10x + k = 0$, what value of *k* will result in a single solution? What is the solution? k = 25
- **70.** Describe and correct the error.

$$-7x^{2} - 63 = 0$$
$$-7x^{2} = 63$$
$$x^{2} = -9$$
$$x = \pm 3$$

The final answer should be: $x = \pm 3i$.

- **71.** A rectangle has a width of x units and a length (x + 4) units. If the area is 32 square units, then determine the value of x and the perimeter of the rectangle. x = 4; 24 units
- **72.** A rectangle has a perimeter of (6x + 14) meters. If the width of the rectangle is (2x + 1) meters and the area of the rectangle is 195 square meters, then determine the value of x and the dimensions of the rectangle. x = 7; **13 meters by 15 meters**
- **73.** The area of a circle is 81π square inches and the diameter is (4x + 10) inches. Determine the value of *x* and the circumference of the circle. x = 2; $C = 18\pi$ inches
- 74. The circumference of a circle is $(8x + 6)\pi$ yards. The area of the circle is 225π square yards. Determine the value of *x* and the radius of the circle. x = 3; r = 15 yards
- **75.** The height of a triangle is (x + 5) centimeters and its base length is (3x + 8) centimeters. If the area of the triangle is 90 square centimeters, then determine the value of x and the dimensions of the triangle. x = 4; the height is 9 cm and the base is 20 cm
- **76.** The area of a trapezoid is 275 mm². The lengths of the parallel sides are (3x + 2) mm and (2x + 3) mm. The height of the trapezoid is (x + 2) mm. Determine the value of x and the dimensions of the trapezoid. x = 9; the height is 11 mm, the bases are 29 mm and 21 mm
- 77. The difference of two integers is 25 and their product is -126. Write and solve an equation to determine the two pairs of integers. The two numbers are 7 and -18 or -7 and 18
- 78. The sum of two integers is 42 and their product is 416. Write and solve an equation to determine the two integers. The two numbers are 16 and 26

Solve each equation by factoring. Use a <i>u</i> -substitution where $u = x^2$.	
79. $x^4 - 13x^2 + 36 = 0$ $x = \pm 2, \pm 3$	80. $x^4 - 2x^2 + 1 = 0$ $x = \pm 1$
81. $x^4 - 9x^2 + 20 = 0$ $x = \pm 2, \pm \sqrt{5}$	82. $x^4 - 13x^2 + 30 = 0$ $x = \pm\sqrt{3}, \pm\sqrt{10}$
83. $36x^4 - 97x^2 + 36 = 0$ $x = \pm \frac{2}{3}, \pm \frac{3}{2}$	84. $2x^4 - 5x^2 + 2 = 0$ $x = \pm \frac{\sqrt{2}}{2}, \pm \sqrt{2}$
85. $9x^4 - 5x^2 - 4 = 0$ $x = \pm 1, \pm \frac{2}{3}i$	86. $x^4 + 13x^2 + 40 = 0$ $x = \pm 2i\sqrt{2}, \pm i\sqrt{5}$

www.hsmathsolutions.com