Classifying Linear Systems (ALG.SYS.01)

Determine whether the ordered pair is a solution of the given system.

1. $P(-1,5) ;\left\{\begin{array}{l}3 x+y=2 \\ -2 x-3 y=-8\end{array}\right.$
2. $M(2,4) ;\left\{\begin{array}{l}2 x-3 y=-8 \\ y=-3 x+10\end{array}\right.$
3. $Q(3,-7) ;\left\{\begin{array}{l}5 x+4 y=-13 \\ 2 x-y=13\end{array}\right.$
4. $K(7,7) ;\left\{\begin{array}{l}y-3=\frac{2}{3}(x-1) \\ x-2 y=-7\end{array}\right.$

Classify each linear system given its description.
5. two lines in a system have the same slope but different y-intercepts
6. two lines in a system are perpendicular and intersect forming right angles
7. two lines in a system have the same slope and the same y-intercept
8. two lines in a system intersect at $(2,-3)$
9. two lines in a system never intersect
10. two lines in a system have different slopes but the same y-intercept
11. two lines in a system are parallel
12. two lines in a system have the equations $x=2$ and $y=-3$
13. two lines in a system are coincident

Use the graph of each linear system to determine the number of solutions in the system.
14.

15.

16.

Determine the classification for each linear system. Justify your answer.
17. $\left\{\begin{array}{l}y=\frac{2}{3} x-5 \\ 3 x-2 y=8\end{array}\right.$
18. $\left\{\begin{array}{l}y=3 x-4 \\ y=-2 x+7\end{array}\right.$
19. $\left\{\begin{array}{l}y-4=2(x+3) \\ -2 x+y=5\end{array}\right.$
20. $\left\{\begin{array}{l}y-3=4(x+2) \\ y+5=4(x-3)\end{array}\right.$
21. $\left\{\begin{array}{l}y=\frac{1}{3} x-2 \\ y+3=\frac{1}{3}(x+3)\end{array}\right.$
22. $\left\{\begin{array}{l}y-7=3(x-2) \\ y=3 x+1\end{array}\right.$
23. $\left\{\begin{array}{l}y=\frac{1}{2} x+5 \\ y=-2 x-3\end{array}\right.$

