Solving Linear Systems by Graphing (ALG.SYS.02)

Solve and classify each linear system by graphing.
1.

$(3,-1)$
Consistent and Independent
3.
$\left\{\begin{array}{l}y=-\frac{1}{2} x+4 \\ y=-3 x-1\end{array}\right.$

$(-2,5)$
Consistent and Independent
2. $\left\{\begin{array}{l}y=3 x-2 \\ y=-x+6\end{array}\right.$

$(2,4)$
Consistent and Independent
4. $\left\{\begin{array}{l}4 x-3 y=6 \\ y-2=\frac{4}{3}(x-3)\end{array}\right.$

Infinite Solutions
Consistent and Dependent
5. $\left\{\begin{array}{l}y=\frac{2}{3} x-4 \\ y=\frac{2}{3} x+1\end{array}\right.$

7. $\left\{\begin{array}{l}2 x-3 y=-9 \\ y=5\end{array}\right.$

$(3,5)$
Consistent and Independent
6. $\left\{\begin{array}{l}y=\frac{4}{3} x-5 \\ y=-\frac{2}{3} x+1\end{array}\right.$

$(3,-1)$
Consistent and Independent
8. $\left\{\begin{array}{l}y=2 x+4 \\ y=\frac{1}{4} x-3\end{array}\right.$

$(-4,-4)$
Consistent and Independent
9. $\left\{\begin{array}{l}y=-\frac{1}{2} x-1 \\ y=-\frac{3}{2} x+3\end{array}\right.$

$(4,-3)$
Consistent and Independent
11. $\left\{y=\frac{1}{3} x+1\right.$
$\left\{y=\frac{5}{3} x-3\right.$

$(3,2)$
Consistent and Independent
10. $\{y=-3 x-1$
$\left\{\begin{array}{l}6 x+2 y=-8\end{array}\right.$

No Solution Inconsistent
12. $\left\{\begin{array}{l}y=3 x-5 \\ y=3 x+2\end{array}\right.$
$\left\{\begin{array}{l}y=3 x+2\end{array}\right.$

No solution Inconsistent
13. $\left\{\begin{array}{l}4+y=x \\ -x=y+2\end{array}\right.$

$(1,-3)$
Consistent and Independent
15. $\left\{\begin{array}{l}9=-7 x-3 y \\ -3 y\end{array}\right.$
$\{-3 y-9-7 x=0$

Infinite Solutions
Consistent and Dependent
14. $\left\{\begin{array}{c}y-3=2(x+2) \\ 2\end{array}\right.$
$\left\{y=-\frac{2}{5} x-5\right.$

$(-5,-3)$
Consistent and Independent
16. $\left\{\begin{array}{l}-y=-1+x \\ -3 y=12+3 x\end{array}\right.$

No solution
Inconsistent
17. $\left\{\begin{array}{l}15 x=12 y-12 \\ -4 y+4+5 x=0\end{array}\right.$

Infinite Solutions

 Consistent and Dependent
18. Determine the value of k that will make the system intersect at the point $Q(1,-2)$.

$$
\left\{\begin{array}{l}
y=2 x-4 \\
y=-3 x+k
\end{array} \quad k=\mathbf{1}\right.
$$

19. Determine values of a and b such that the linear system has a solution of $P(4,-9)$.

$$
\left\{\begin{array}{l}
y=-\frac{1}{2} x+a \\
2 x+y=b
\end{array} \quad a=-7, b=-1\right.
$$

20. Determine the values of a and b that will make the system intersect at the point $M(-5,7)$.

$$
\left\{\begin{array}{l}
2 x+a y=11 \\
y-1=2(x+b)
\end{array} \quad a=3, \quad b=8\right.
$$

21. Determine values of a and b that will make the system have no solution.

$$
\left\{\begin{array}{l}
y=a x-4 \\
y=-\frac{4}{3} x+b
\end{array} \quad a=-\frac{4}{3}, \quad b \neq-4\right.
$$

22. Determine values of a and b such that the linear system has infinite solutions.

$$
\left\{\begin{array}{l}
2 x-3 y=a \\
y-1=b(x+6)
\end{array} \quad a=-15, \quad b=\frac{2}{3}\right.
$$

23. Determine the values of a and b that will make the system have an infinite number of solutions.

$$
\left\{\begin{array}{l}
2 x-y=a \\
y=b x+7
\end{array} \quad a=-7, \quad b=2\right.
$$

