Find the general solution.
\[ \frac{dy}{dx}=\frac{12x^3}{4y-\sin{y}} \]
Find the general solution.
\[ \frac{dy}{dx}=3x \sqrt{y} \]
Find the general solution.
\[ x y'=3(y-2) \]
Find the general solution.
\[ \frac{dy}{dx}=e^{x-2y} \]
Use the initial condition to find the particular solution.
\[ y \cdot y'-5e^x=10 \quad \quad y(0)=2 \]
Use the initial condition to find the particular solution.
\[ 2y \cdot y'=4 \sin{x} \quad \quad y \Big( \frac{\pi}{4} \Big) =\sqrt{2} \]
Use the initial condition to find the particular solution.
\[ \sqrt{x} -\sqrt{y} \cdot y' = 0 \quad \quad y(9)=1 \]
Use the initial condition to find the particular solution.
\[ y(2x-1)+y'=0 \quad \quad y(-3)=e \]
Use the initial condition to find the particular solution.
\[ y \cdot \ln{x} - xy'=0 \quad \quad y \big(e^2 \big)=1 \]
Use the initial condition to find the particular solution.
\[ y' = x y \sin{x^2} \quad \quad y(0)=\sqrt{e} \]
Find the general solution.
\[ y'+y=3 \]
Find the general solution.
\[ y'+y=e^{-x} \]
Find the general solution.
\[ 2xy'+y=10\sqrt{x} \]
Use the initial condition to find the particular solution.
\[ xy'-4y=6x^{3} \quad \quad y(2)=24 \]
Use the initial condition to find the particular solution.
\[ xy'+3y=\frac{\ln x}{x^{2}} \quad \quad y(1)=3 \]